F-B200CN-BG NB-IoT	文档版本	密级
模块硬件设计手册	V1.0.4	
	产品名称: F-B200CN-BG	共 34 页

F-B200CN-BG NB-IoT 模块

硬件设计手册

客户热线: 400-8838 -199 电话: +86-592-6300320 传真: +86-592-5912735

网址: www.four-faith.com

地址: 厦门集美软件园三期 A06 栋 11 层

文档修订记录

日期	版本	说明	作者
2018/6/25	V1.0.0	初始版本	柴俊鑫
2018/8/24	V1.0.1	更新包装方式为托盘	柴俊鑫
2018/9/25	V1.0.2	更新了封装尺寸	柴俊鑫
2018/11/16	V1.0.3	更新了关机 AT 命令以及工作电压范围	柴俊鑫
2018/11/28	V1.0.4	更新低功耗模式 AT 指令、增加复位 AT 指令、不支持功能标*	李喵

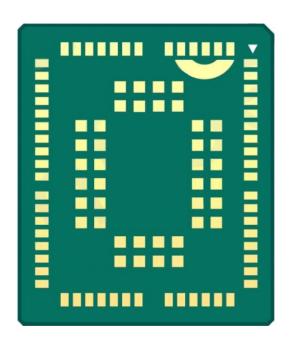
著作权声明

本文档所载的所有材料或内容受版权法的保护,所有版权由厦门四信通信科技有限公司拥有,但注明引用其他方的内容除外。未经四信公司书面许可,任何人不得将本文档上的任何内容以任何方式进行复制、经销、翻印、连接、传送等任何商业目的的使用,但对于非商业目的的、个人使用的下载或打印(条件是不得修改,且须保留该材料中的版权说明或其他所有权的说明)除外。

商标声明

Four-Faith、四信、「Our-Faith」 「「」」」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」

产品外形图


F-B200CN-BG

SN:B0010180000015

IMEI:861764040000159

TOP

BOTTOM

目录

1	产品概念	7
	1.1 F-B200CN-BG 综述	7
	1.2 主要性能	7
	1.3 F-B200CN-BG 射频部分功能框图	8
2	应用接口	9
	2.1 管脚分配	9
	2.2 I/0 参数定义	10
	2.3 管脚描述	10
	2.4 工作模式	13
	2.5 低功耗模式	14
	2.5.1 扩展空闲模式非连续接收 (e-I-DRX)	14
	2.5.2 飞行模式	14
	2.5.3 省电模式 (PSM)	15
	2.6 电源供电	15
	2.6.1 电源供电接口	15
	2.6.2 电源供电参考设计	15
	2.7 开/关机	16
	2.7.1 开机	16
	2.7.2 关机	17
	2.8 复位功能	17
	2.9 (U)SIM 接口	18
	2.10 UART 接口	19
	2.12 模块状态指示	21
3	天线接口	23
	3.1 主天线接口	23
	3.1.1 管脚定义	23
	3.1.2 工作频段	23
	3.1.3 主天线参考设计	23
	3.1.4 RF_ANT layout 指导	24
	3.2 BT 天线接口	25
	3.2.1 管脚定义	25
	3.2.2 BT 天线接口参考设计	26
	3.3 天线接头	26
4	电气可靠性及射频性能	28
	4.1 极限参数	28
	4.2 电源额定值	28
	4.3 工作温度	28
	4.4 耗流	28
	4.5 发射功率	29
	4.6接收灵敏度	29
	4.7 静电放电(ESD)	29

5	,物理尺寸	30
	5.1 模块物理尺寸	
6	;存储和生产	32
	6.1 存储	32
	6.2 生产焊接	32
	6.3 包装	33

1 产品概念

1.1 F-B200CN-BG 综述

F-B200CN-BG 是一款支持半双工 LTE、不支持分集接收功能的 LTE Cat.NB1 物联网无线通信模块,F-B200CN-BG 可以在 NB-IoT 网络下提供数据连接。

F-B200CN-BG 支持的频段和 BT 功能如下表所示:

表 1-1 F-B200CN-BG 支持的频段和 BT 功能

	• •	2	··-
模块	LTE 频段	分集接收	BT
F-B200CN-BG	Cat NB1: LTE-FDD: B3/B5/B8	不支持	TBD*

F-B200CN-BG 具有 22.7mm×26.7mm×2.3mm 的紧凑尺寸,几乎能够满足所有 M2M 应用的需求,包括汽车及个人追踪服务、可穿戴服务、安防系统、无线 POS 机、工业级 PDA、智能抄表、无线遥控等。

F-B200CN-BG 是 SMD 类型模块, 共 103 个 LGA 焊盘, 很容易内嵌于产品应用中, F-B200CN-BG 集成了 TCP、UDP 和 MQTT 等数据传输协议,已内嵌的扩展 AT 命令可以使用户更容易地使用这些互联网协议,集成有 eSIM 功能(可选),方便用户把产品尺寸做到更小。

1.2 主要性能

表 1-2 主要性能参数

性能	描述		
电源供电	电源供电范围: 3.4V~4.2V 典型供电电压: 3.8V		
	Class 3 (23dBm±2.7dB) for LTE-FDD		
	Class 3 (23dBm±2.7dB) for LTE-TDD		
	支持 LTE Cat.NB1		
LTE 特性	LTE Cat.NB1 下支持 200KHz 带宽		
TIE 44 IX	下行支持 SISO		
	Cat.NB1:最大上行速率 70kbps,最大下行速率 32kbps		
	支持 PPP/TCP/UDP/COAP/SSL/TLS/FTP(S)/HTTP(S)协议		
网络协议	支持 PAP(Password Authentication Protocol)和 CHAP(Challenge		
	Handshake Authentication Protocol)		
短信服务 (SMS)	文本与 PDU 模式		

	点对点短信收发*
	短信小区广播*
	SMS 存储: 默认(U)SIM 卡
(INCIM 上拉口	支持 USIM/SIM 卡: 1.8 V 和 2.85 V;
(U)SIM 卡接口	支持 eSIM(可选)
	UART1:
	用于 AT 命令传送和数据传输
	默认波特率为 57600bps
	UART2:
UART 接口	预留
	UART3:
	预留
	UART4:
	用于模块调试和日志输出
AT AA	3GPP TS 27.007 和 3GPP TS 27.005 定义的命令,以及厦门四信
AT 命令	通信新增的 AT 命令
天线接口	包括主天线接口(ANT_MAIN)和 BT 天线接口(ANT_BT)
尺寸	(22.7 ± 0.15) mm × (26.7 ± 0.15) mm × (2.3 ± 0.2) mm
工作 识应	正常工作温度: -35℃~+75℃
工作温度 	扩展工作温度: -40℃~+85℃
软件升级	可通过 UART 接口和 FOTA 升级*
RoHS	所有器件完全符合 EU RoHS 标准
A V. (42) + - T+T/V.+	

备注: "*"表示正在开发中

1.3 F-B200CN-BG 射频部分功能框图

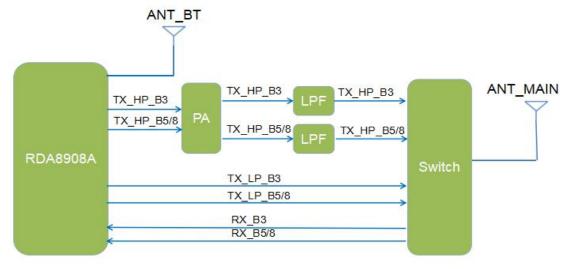


图 1-1 F-B200CN-BG 射频功能框图

8 / 34

2 应用接口

F-B200CN-BG 为 LGA 封装, 共 103 个管脚,可以被应用到客户的无线应用平台上。模块各组功能接口如下:

- 1. 电源供电接口
- 2. (U)SIM 卡接口
- 3. UART 接口
- 4. I²C 接口
- 5. SPI 接口

2.1 管脚分配

F-B200CN-BG 管脚分配如下所示:

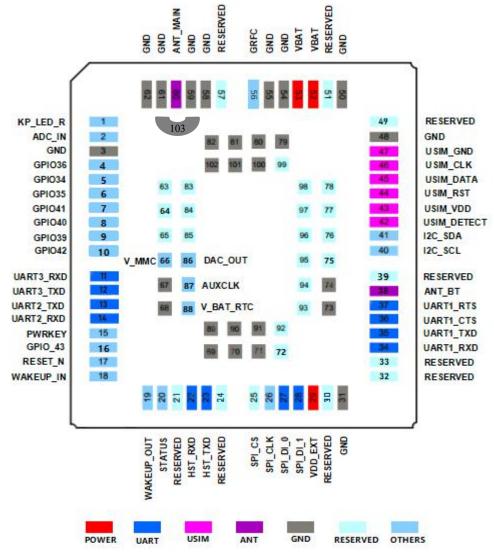


图 2-1 F-B200CN-BG 管脚分配(俯视图)

注意:

- 1. 所有 RESERVED 和不用的管脚需悬空。
- 2. GND 管脚做接地处理。
- 3. "*"表示正在开发中。

2.2 I/O 参数定义

表 2-1 I/O 参数定义

	类型	描述				
IO		双向端口				
DI		数字输入				
DO		数字输出				
PI		电源输入				
PO		电源输出				
AI		模拟输入				
AO		模拟输出				
OD		漏极开路				

2.3 管脚描述

表 2-2 管脚描述

			农 2-2 目 脚 田 处	
电源				
引脚号	引脚名	I/O	描述	备注
52, 53	VBAT	PI	模块电源	3.4~4.2V
29	VDD_EXT	РО	输出 1.8/2.8V	仅可为外部 GPIO 提供 上拉;不用则悬空
3, 31, 48, 50, 54, 55, 58, 59, 61, 62, 67~71, 73,74, 79~82, 89~91, 100 ~	GND		地	
开/关机				
引脚号	引脚名	I/O	描述	备注

Four-Faith			I. DZUUCN-DG	ND-101 侯妖使什及日子加
15	PWRKEY	DI	开/关机信号	
17	RESET_N	DI	模块复位信号	不用则悬空
状态指示	:			
引脚号	引脚名	I/O	描述	备注
20	STATUS	DO	指示模块工作状态	VDD_EXT 电源域, 不用则悬空
GPIO 接	П			
引脚号	引脚名	I/O	描述	备注
4	GPIO_36	Ю	通用输入输出接口	VDD_EXT 电源域, 不用则悬空
5	GPIO_34	Ю	通用输入输出接口	VDD_EXT 电源域, 不用则悬空
6	GPIO_35	Ю	通用输入输出接口	VDD_EXT 电源域, 不用则悬空
7	GPIO_41	Ю	通用输入输出接口	VDD_EXT 电源域, 不用则悬空
8	GPIO_40	Ю	通用输入输出接口	VDD_EXT 电源域, 不用则悬空
9	GPIO_39	Ю	通用输入输出接口	VDD_EXT 电源域, 不用则悬空
10	GPIO_42	Ю	通用输入输出接口	VDD_EXT 电源域, 不用则悬空
16	GPIO_43	Ю	通用输入输出接口	VDD_EXT 电源域, 不用则悬空
(U)SIM	卡接口			
引脚号	引脚名	I/O	描述	备注
42	USIM_PRESEN CE	DI	(U)SIM 卡检测	VDD_EXT 电源域, 不用则悬空
43	USIM_VDD	РО	(U)SIM 卡电源供电	模块自动识别 1.8V 或 2.85V (U)SIM 卡
44	USIM_RST	DO	(U)SIM 卡复位线	
45	USIM_DATA	Ю	(U)SIM 卡数据线	
46	USIM_CLK	DO	(U)SIM 卡时钟线	
47	USIM_GND		(U)SIM 卡专用地	
UART1	接口			
 引脚号	引脚名	I/O	描述	备注
34	UART1_RXD	DI	数据接收	VDD_EXT 电源域, 不用则悬空

Four-Faith	, [:-]:-		F-BZUUCN-BG N	B-101 快块咿件仅订于加
				不用则悬空
36	UART1_CTS	DO	清除发送	VDD_EXT 电源域, 不用则悬空
37	UART1_RTS	DI	请求发送数据	VDD_EXT 电源域, 不用则悬空
UART2	接口			
引脚号	引脚名	I/O	描述	备注
13	UART2_TXD	DO	UART2_TXD, 数据传 输	VDD_EXT 电源域, 不用则悬空
14	UART2_RXD	DI	UART2_RXD,数据接收	VDD_EXT 电源域, 不用则悬空
UART3	接口			
引脚号	引脚名	I/O	描述	备注
11	UART3_RXD	DI	数据发送	VDD_EXT 电源域, 不用则悬空
12	UART3_TXD	DO	数据接收	VDD_EXT 电源域, 不用则悬空
UART4	接口			
引脚号	引脚名	I/O	描述	备注
22	HST_RXD	DI	数据接收	VDD_EXT 电源域, 不用则悬空
23	HST_TXD	DO	数据发送	VDD_EXT 电源域, 不用则悬空
SPI 接口	ı			
引脚号	引脚名	I/O	描述	备注
25	SPI_CS	DO	SPI 芯片选择	VDD_EXT 电源域, 不用则悬空
26	SPI_CLK	Ю	SPI 时钟	VDD_EXT 电源域, 不用则悬空
27	SPI_DI_0	Ю	SPI 数据传输	VDD_EXT 电源域, 不用则悬空
28	SPI_DI_1	Ю	SPI 数据传输	VDD_EXT 电源域, 不用则悬空
I2C 接口	I			
引脚号	引脚名	I/O	描述	备注
40	I2C_SCL	OD	I2C 串行时钟	VDD_EXT 电源域, 不用则悬空
41	I2C_SDA	OD	I2C 串行数据	VDD_EXT 电源域,
				<u> </u>

				不用则悬空
天线接口				
引脚号	引脚名	I/O	描述	备注
60	ANT_MAIN	Ю	主天线接口	
38	ANT_BT	Ю	BT 天线接口	不用则悬空
其他管脚				
引脚号	引脚名	I/O	描述	<u> </u>
1	KP_LED_R	DO	LED Driver	VBAT 电源域, 不用则悬空
18	WAKEUP_IN	DI	唤醒模块	1.08V 电源域,高电平有效, 需持续 1s。可用于 PSM 模式 下唤醒模块
19	WAKEUP_OUT	DO	唤醒外部设备	VDD_EXT 电源域, 不用则悬空
56	GRFC	Ю	通用射频控制位	
87	AUXCLK	Ю	26MHz Crystal Output	
88	V_BAT_RTC	DO	LDO Output for VBAT_RTC	
ADC 接口	1			
引脚号	引脚名	I/O	描述	备注
2	ADC_IN	AI	通用模数转换接口	不用则悬空
86	DAC_OUT	AO	通用数模转换接口	不用则悬空
预留管 脚				
引脚号	引脚名	I/O	描述	
11, 12, 21,24,30, 32,33,39, 49,51,				
57, 63~ 66, 75~78, 83~85, 92~99	RESERVED		预留	保持悬空

2.4 工作模式

表 2-3 工作模式

		K 2 3 - 11 K 2 1
模式	说明	

正常工	Idle	软件正常运行。模块注册上网络,能够接收和发送数据。			
作模式	Talk /	网络连接正常工作。此模式下,模块功耗取决于网络设置和数据传输			
计怪八	Data	速率。			
七田公口	北土出	e-I-DRX 的功耗略高于 PSM; 但是相对于 PSM, 大幅提升了下行通			
扩展空闲		信链路的可达到性。模块与核心网通过附着和 TAU 过程来协商与			
连续按収	(e-I-DRX)	e-I-DRX 相关的参数。			
飞行模式		AT+CFUN=4 命令可以将模块设置成飞行模式。此模式下射频功能被			
		关闭。			
		不断电情况下,使用 AT+CFUN=0 命令可以将模块设置成最少功能模			
最少功能	模式	式。此模式下,射频和(U)SIM 卡功能被关闭,但是串口及 USB 仍然			
		可以正常访问。			
		模块可以通过进入 PSM 的方式来进一步降低自身功耗。 PSM 类似于			
省电模式	(PSM)	关机,但是模块仍然注册在网络上。从 PSM 模式唤醒后,模块不需			
. ,		要重新附着和重新建立 PDN 连接。			
~ ++ + + -		在此模式下,模块内部供电停止; 串口和 USB 口无法访问; 软件不运			
关机模式	l	行。			

2.5 低功耗模式

2.5.1 扩展空闲模式非连续接收(e-I-DRX)

- 1. F-B200CN-BG 可以通过使用 e-I-DRX 的方式来达到降低功耗的目的。e-I-DRX 的功耗略高于 PSM;但是相对于 PSM,大幅提升了下行通信链路的可达到性。模块与核心网通过附着和 TAU 过程来协商与 e-I-DRX 相关的参数。
- 2. 如果模块决定请求 e-I-DRX,则模块在附着请求或 TAU 请求消息中携带请求使用的 e-I-DRX 参数,包括空闲状态 DRX 相关的参数等。
 - 3. 核心网决定是否接受模块激活 e-I-DRX 的请求。
- 4. 当接受时,核心网基于运营商的策略,可以向模块提供不同于其请求的 e-I-DRX 参数,同时还向模块提供寻呼时间窗长度;此时模块应根据接收到的 e-I-DRX 长度和寻呼时间窗长度使用。
- 5. 当核心网拒绝模块的请求或不支持 e-I-DRX 时,附着/TAU 接受消息中没有 e-I-DRX 参数,模块使用正常的 DRX 机制。
- 6. 如果网络侧支持 e-I-DRX,可以通过 AT+CSCLK=2, AT+NVSETUP=2,AT+CEDRXS=1,AT&W 命令来使能此功能。

2.5.2 飞行模式

当 F-B200CN-BG 模块进入飞行模式时,射频功能被关闭,而且所有与射频相关的 AT 命令不可访问。可通过软件方式使模块进入飞行模式:

此模式可以通过发送 AT+CFUN=<fun>命令来设置。<fun>参数可以选择 0, 1, 或 4。

1. AT+CFUN=0: 最少功能模式, 关闭 RF 和(U)SIM 卡;

14/34

- 2. AT+CFUN=1: 全功能模式(默认);
- 3. AT+CFUN=4: 关闭 RF 功能(飞行模式)。

2.5.3 省电模式 (PSM)

F-B200CN-BG 模块可以通过进入 PSM 的方式来进一步降低自身的功耗。PSM 类似于关机,但模块仍然注册在网络上。从 PSM 模式唤醒后,模块不需要重新附着或重新建立 PDN 连接。因此模块进入 PSM 后,不能立即响应用户请求。

当模块需要使用 PSM 时,它将在每个附着和 TAU 过程期间请求一个活动时间值。如果 网络侧支持 PSM,并接受模块使用 PSM,则网络通过为模块分配活动时间值来确认 PSM 的 使用。如果模块想要改变活动时间值,例如当模块中的条件发生变化时,模块将在 TAU 过程中请求所需的值。

如果网络侧支持 PSM,可以通过 AT+CSCLK=2, AT+NVSETUP=2, AT+CPSMS=1, AT&W 命令来使能 PSM 功能。

如下方式可从 PSM 状态下唤醒模块:

- 1. WAKEUP 管脚拉至高电平可唤醒模块;
- 2. 等待定时器(T3412)溢出,模块将会自动唤醒。

2.6 电源供电

2.6.1 电源供电接口

1. F-B200CN-BG 有 2 个 VBAT 管脚用于连接外部电源。

表 2-4 VBAT 管脚和地管脚

引脚号	引脚名	I/O	描述	DC 特性	备注
				Vmax = 4.2V	
52, 53	VBAT	PI	射频模块电源	Vmin = 3.4V	
				$V_{norm} = 3.8V$	
3, 31, 48, 50, 54, 55, 58, 59, 61, 62, 67~71, 73,74, 79~82, 89~91, 100~ 103	GND		地		

2.6.2 电源供电参考设计

F-B200CN-BG 的供电范围为 3.4~4.2V,需要确保输入电压不低于 3.4V。为减少电压跌落,建议靠近 VBAT 管脚分别放置一个低 ESR 的 100uF 滤波电容和三个陶瓷电容(100nF、33pF 和 10pF)。外部供电电源连接模块时走线宽度不应小于 2mm。原则上,VBAT 走线越

长,走线越宽。

另外,为了保证电源稳定,建议在电源前端加 5.1V、功率 0.5W 以上的齐纳二极管。供电电路参考设计如下:

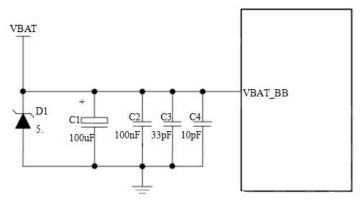


图 2-2 电源供电参考设计

2.7 开/关机

2.7.1 开机

F-B200CN-BG 模块处于关机状态时,可以通过拉低 PWRKEY 至少 480ms 使模块开机。推荐使用开集驱动电路来控制 PWRKEY 管脚。在 STATUS 管脚输出高电平之后,可以释放 PWRKEY 管脚。

		, ,		71.0
管脚号	管脚名	描述	DC 特性	备注
15	PWRKEY	用于模块 开/关机	V_{IH} max=2.1V V_{IH} min=1.3V V_{IL} max=0.5V	由于芯片集内部存在二极管压降, 该管脚输出电压为 0.8V。

表 2-5 PWRKEY 管脚描述

参考设计如下:

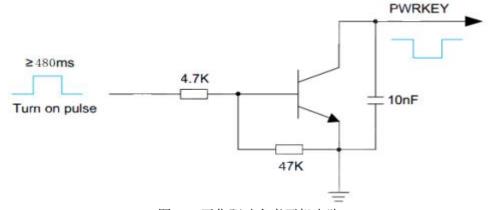


图 2-3 开集驱动参考开机电路

另一种控制 PWRKEY 管脚的方式是直接通过一个按钮开关,按钮附近需放置一个 TVS 用于 ESD 保护,参考电路如下:

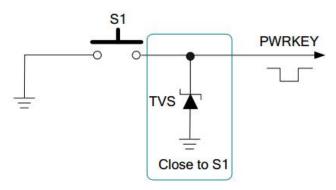


图 2-4 按键开机参考电路

2.7.2 关机

模块可通过 AT+CPOF 命令来执行模块关机。

2.8 复位功能

RESET_N 管脚用于复位模块。拉低 RESET_N 管脚 950ms 后可使模块复位。RESET_N 信号对干扰比较敏感,因此建议在模块接口板上的走线应尽量的短,且需包地处理。

		, ,	_ · · · · · in /3	1 1 1 1 1	
引脚号	引脚名	I/O	描述	DC 特性	备注
				V_{IH} max=2.1 V	
17	RESET_N	DI	模块复位信号	$V_{IH}min=1.3V$	不用则悬空
				V_{IL} max=0.5 V	

表 2-6 RESET N 管脚描述

参考电路与 PWRKEY 控制电路类似,客户可使用开集驱动电路或按钮控制 RESET_N 管脚:

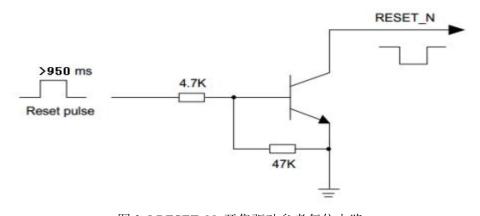


图 2-5 RESET_N 开集驱动参考复位电路

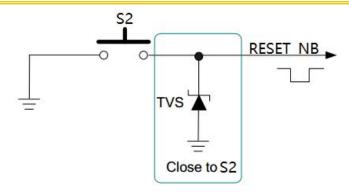


图 2-6 RESET_N 按键参考复位电路

AT 复位指令: 可以通过 AT+TRB 指令来复位

2.9 (U)SIM 接口

(U)SIM 接口符合 ETSI 和 IMT-2000 规范, 支持 1.8V 和 2.85V(U)SIM 卡。

表 2-7 (U)SIM 管脚描述

			()	
管脚号	管脚名	I/O	描述	备注
42	USIM_DETE	DI	(U)SIM 卡插拔检测	
42	CT	DI	(U)SIM 下1田1久位初	
43	USIM_VDD	PO	(U)SIM 卡供电电源	支持 1.8V 和 2.82V 电压
44	USIM_RST	DO	(U)SIM 卡复位信号	
45	USIM_DATA	IO	(U)SIM 卡数据信号	
46	USIM_CLK	DO	(U)SIM 卡时钟信号	
47	USIM_GND		(U)SIM's 卡专用地	

通过 USIM_DETECT 管脚,F-B200CN-BG 模块可支持(U)SIM 卡热插拔功能,并且支持低电平和高电平检测。该功能默认关闭。

8-pin(U)SIM 卡座参考电路如下:

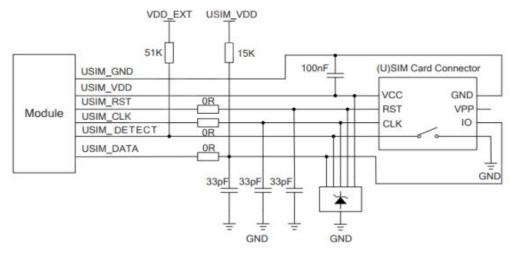


图 2-7 8-pin (U)SIM 卡座参考设计

如果不需要用 USIM_PRESENCE 管脚作为(U)SIM 卡检测功能,请保持该管脚悬空。下图是使用 6-pin(U)SIM 卡座参考电路:

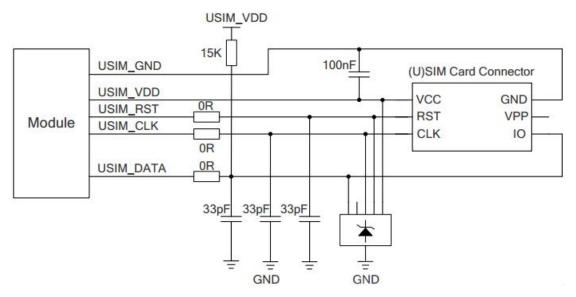


图 2-8 6-pin (U)SIM 卡座参考设计

在(U)SIM 接口电路设计中,为了确保(U)SIM 卡良好的性能和不被损坏,在电路设计中建议遵循以下设计原则:

- 1. (U)SIM 卡座靠近模块摆放,尽量保证(U)SIM 卡信号线布线长度不超过 200mm;
- 2. (U)SIM 卡信号线布线远离 RF 线和 VBAT 电源线;
- 3. (U)SIM 卡座的地与模块的 USIM_GND 布线要短而粗;保证 USIM_VDD 与 USIM_GND 布线宽度不小于 0.5mm,且在 USIM_VDD 与 USIM_GND 之间的旁路电容不超过 1uF,并且靠近 USIM 卡座摆放;如果客户主板上的系统地完整,USIM_GND 可以直接连接到系统地;
- 4. 为了防止 USIM_CLK 信号与 USIM_DATA 信号相互串扰,两者布线不能太靠近,并且在两条走线之间增加地屏蔽,此外,USIM_RST 信号也需要地保护;
- 5. 为了确保良好的 ESD 性能,建议(U)SIM 卡的管脚增加 TVS 管;选择的 TVS 管寄生 电容不大于 15pF;为了便于调试,建议模块(U)SIM 信号线上预留串联电阻;(U)SIM 卡的 外围器件应尽量靠近(U)SIM 卡座摆放;
- 6. 在 USIM_DATA, USIM_CLK 和 USIM_RST 线上并联 33pF 电容用于滤除射频干扰,并且靠近(U)SIM 卡座摆放;
- 7. USIM_DATA 上的上拉电阻有利于增加(U)SIM 卡的抗干扰能力,当(U)SIM 卡走线过长,或者有干扰源比较近的情况下,建议增加上拉电阻。

2.10 UART 接口

F-B200CN-BG 有 4 个串口: UART1、UART2、UART3 和 UART4。如下为这 4 个串口的主要特性:

1. UART1: 支持 57600bps 波特率, 用于数据传输和 AT 命令传送。

UART2: 预留接口。
 UART3: 预留接口。

4. UART4: 支持 115200bps 波特率,用于模块调试和日志输出。

表 2-9 UART1 管脚描述

引脚号	引脚名	I/O	描述	备注
34	UART1_RXD	DI	数据接收	VDD_EXT 电源域,不用则悬空
35	UART1_TXD	DO	数据发送	VDD_EXT 电源域,不用则悬空
36	UART1_CTS	DO	清除发送	VDD_EXT 电源域,不用则悬空
37	UART1_RTS	DI	请求发送数据	VDD_EXT 电源域,不用则悬空

表 2-10 UART2 管脚描述

引脚号	引脚名	I/O	描述	备注
13	UART2_TXD	DO	数据发送	VDD_EXT 电源域,不用则悬空
14	UART2_RXD	DI	数据接收	VDD_EXT 电源域,不用则悬空

表 2-11 UART3 管脚描述

引脚号	引脚名	I/O	描述	备注
11	UART3_RXD	DO	数据接收	VDD_EXT 电源域,不用则悬空
12	UART3_TXD	DI	数据发送	VDD_EXT 电源域,不用则悬空

表 2-12 UART4 管脚描述

引脚号	引脚名	I/O	描述	备注
22	HST_RXD	DI	数据接收	VDD_EXT 电源域,不用则悬空
23	HST_TXD	DO	数据发送	VDD_EXT 电源域,不用则悬空

串口逻辑电平如下表所示:

表 2-13 串口逻辑电平

Parameter	Min	Max	Unit
$ m V_{IL}$	-0.3	0.6	V
$V_{ m IH}$	1.2	2.0	V
V_{OL}	0	0.45	V
V _{OH}	1.35	1.8	V

F-B200CN-BG 模块的串口电平为 1.8/2.8V。若客户主机系统电平为 3.3V,则需在模块和主机的串口连接中增加电平转换器,推荐使用 TI 公司的 TXS0108EPWR。下图为使用电平转换芯片的参考电路设计:

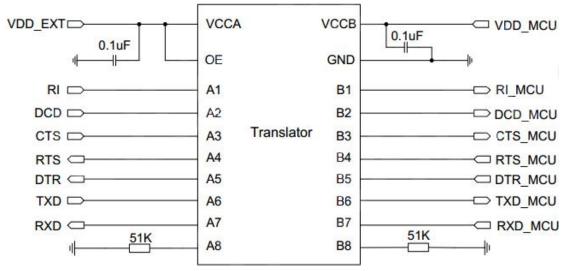
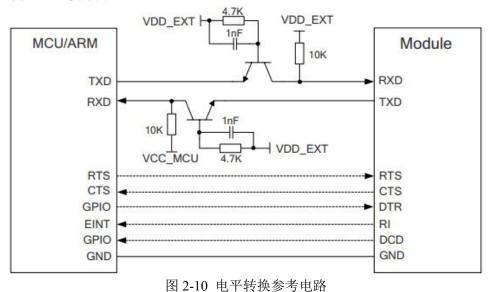



图 2-9 电平转换芯片参考电路

另一种电平转换电路如下图所示。如下虚线部分的输入和输出电路设计可参考实线部分,但需注意连接方向。

2.12 模块状态指示

STATUS 用于指示模块的工作状态。当模块正常开机时,STATUS 会输出高电平。

表 2-14 STATUS 管脚描述

引脚号	引脚名	I/O	描述	备注
20	STATUS	DO	指示模块工作状态	VDD_EXT 电源域

参考设计

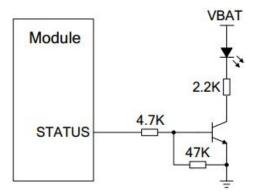


图 2-11 STATUS 参考设计

3 天线接口

F-B200CN-BG 支持一路主天线接口和一路 BT 天线接口,天线接口阻抗为 $50\,\Omega$ 。

3.1 主天线接口

3.1.1 管脚定义

表 3-1 主天线管脚定义

引脚号	引脚名	I/O	描述	DC 特性
60	ANT_MAIN	IO	主天线接口	特性阻抗 50Ω

3.1.2 工作频段

表 3-2 模块工作频段

3GPP 频段	Ful_low - Ful_high	F _{DL_low} - F _{DL_high}	单位
LTE-FDD B3	1710~1785	1805~1880	MHz
LTE-FDD B5	824~849	869~894	MHz
LTE-FDD B8	880~915	925~960	MHz

3.1.3 主天线参考设计

对于天线接口的外围电路设计,为了能够更好地调节射频性能,建议预留 π 型匹配电路,天线连接参考电路如下图所示。其中 π 型匹配元件(R1/C1/C2)应尽量靠近天线放置;C1、C2 默认不贴;只贴 0 欧姆电阻 R1。

参考电路如下所示:

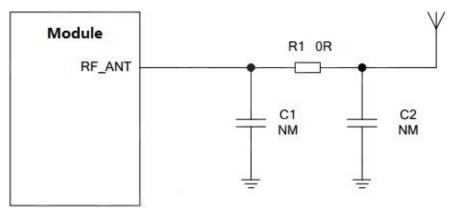


图 3-1 RF_ANT 参考设计

3.1.4 RF_ANT layout 指导

对于用户 PCB 而言,所有的射频信号线的特性阻抗应控制在 $50\,\Omega$ 。一般情况下,射频信号线的阻抗由材料的介电常数、走线宽度(W)、对地间隙(S)、以及参考地平面的高度(H)决定。PCB 特性阻抗的控制通常采用微带线与共面波导两种方式。为了体现设计原则,下面几幅图展示了阻抗线控制为 $50\,\Omega$ 时微带线以及共面波导的结构设计。

1. 微带线完整结构:

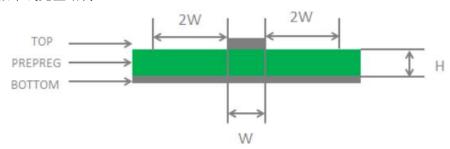


图 3-2 两层 PCB 板微带线结构

2. 共面波导完整结构

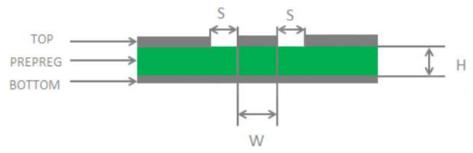


图 3-3 两层 PCB 板共面波导结构

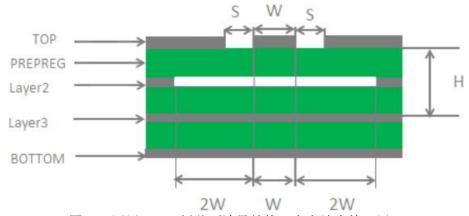


图 3-4 四层 PCB 板共面波导结构 (参考地为第三层)

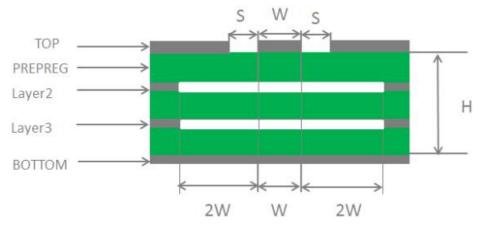


图 3-5 四层 PCB 板共面波导结构 (参考地为第四层)

在射频天线接口的电路设计中,为了确保射频信号的良好性能与可靠性,在电路设计中建议遵循以下设计原则:

- 1. 应使用阻抗模拟计算工具对射频信号线进行精确的 50 Ω 阻抗控制;
- 2. 与射频管脚相邻的 GND 管脚不做热焊盘,要与地充分接触;
- 3. 射频管脚到 RF 连接器之间的距离应尽量短;同时避免直角走线,建议的走线夹角为 135 度;
 - 4. 连接器件封装建立时要注意,信号脚离地要保持一定距离;
- 5. 射频信号线参考的地平面应完整;在信号线和参考地周边增加一定量的地孔可以帮助提升射频性能;地孔和信号线之间的距离应至少为 2 倍线宽(2*W)。

3.2 BT 天线接口

3.2.1 管脚定义

表 3-3 BT 天线管脚定义

引脚号	引脚名	I/O	描述	DC 特性	备注
38	ANT_BT	IO	BT 天线接口	50Ω 阻抗	不用则悬空

3.2.2 BT 天线接口参考设计

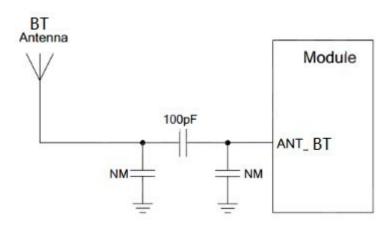


图 3-6 BT 接口参考设计

3.3 天线接头

主天线和 BT 天线要求如下表所示:

表 3-5 天线要求

天线类型	需求
	$VSWR: \leq 2$
	增益(dBi): 1
	最大输入功率: 50W
NB 天线	输入阻抗: 50Ω
	极化类型:垂直方向
	线缆插入损耗: <1.0dB (LTE B5/B8)
	线缆插入损耗: <1.5dB (LTE B3)
BT 天线	频率范围: 2400~2500MHz
DI 八线	VSWR: <2 (典型值)

如果使用 RF 连接器进行天线连接,推荐使用 Hirose 的 UF.L-R-SMT 连接器。

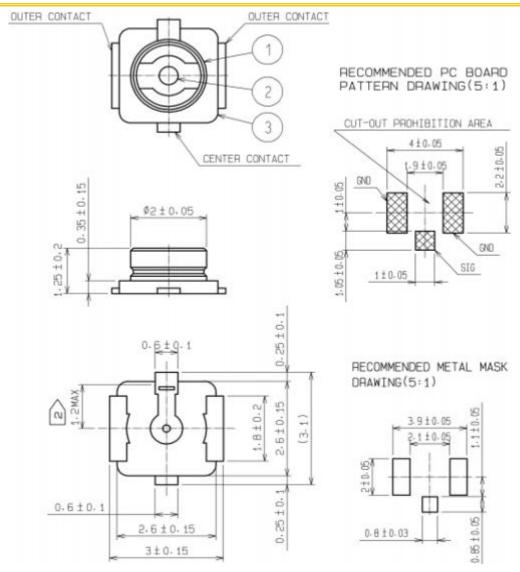


图 3-7 UF.L-R-SMT 连接器尺寸(单位:毫米)

4 电气可靠性及射频性能

4.1 极限参数

下表描述 F-B200CN-BG 部分管脚电压电流最大耐受值:

表 4-1 极限参数

参数	最小	最大	单位
VBAT		5	V

4.2 电源额定值

表 4-2 F-B200CN-BG 电源额定值

参数	描述	条件	最小	典型	最大	单位
VBAT	主电源	实际输入电压必须在该范围之内。	3.4	3.8	4.2	V
I_{VBAT}	峰值电流	LTE Cat.NB 条件下,最大发射功率为 23dBm		170	TBD	mA

4.3 工作温度

表 4-3 工作温度

参数	最小	典型	最大	单位
正常工作温度 1)	-20	25	+70	$^{\circ}\!\mathbb{C}$
五展工作温度 ²⁾	-40		+85	\mathbb{C}

注意:

- 1. ¹⁾表示当模块工作在此温度范围时,模块的相关性能满足 3GPP 标准要求。
- 2. ²⁾表示当模块工作在此温度范围时,模块仍能保持正常工作状态,具备语音、短信、数据传输、紧急呼叫等功能;不会出现不可恢复的故障;射频频谱、网络基本不受影响。仅个别指标如输出功率等参数的值可能会超出 3GPP 标准的范围。当温度返回至正常工作温度范围时,模块的各项指标仍符合 3GPP 标准。

4.4 耗流

表 4-4 耗流表

参数	描述	条件	典型值	单位
I_{VBAT}	关机	关机模式	8.3	uA

28 / 34

最少功能模式	AT+CFUN=0 (串口和 USB 不连接)	12.5	mA
省电模式	PSM @LTE Cat.NB1 网络	5.5	uA
待机模式	e-I-DRX=20.48s @LTE Cat.NB1 网络 (串口和 USB 不连接)	0.78	mA
LTE Cat.NB1 数据传输	23dBm (仪器测试)	170	mA

4.5 发射功率

表 4-5 发射功率

频段	最大	最小
LTE-FDD B3/B5/B8	23dBm±2.7dB	<-44dBm

4.6 接收灵敏度

表 4-6 接收灵敏度

		11	~
频段	主集	分集	Cat.NB1 灵敏度
/火·汉	土朱	万朱	3GPP (dBm)
LTE-FDD B3	支持		<-115
LTE-FDD B5	支持	 不支持	<-115
LTE-FDD B8	支持		<-115

4.7 静电放电 (ESD)

在模块应用中,由于人体静电、微电子间带电摩擦等产生的静电,通过各种途径放电给模块,可能会对模块造成一定的损坏,因此 ESD 防护应该受到重视。在研发、生产组装和测试等过程中,尤其在产品设计中,均应采取 ESD 防护措施。例如,在电路设计的接口处以及易受静电放电损伤或影响的点,应增加防静电保护;生产中应佩戴防静电手套等。

下表为模块重要引脚的 ESD 耐受电压情况:

表 4-7 ESD 性能参数 (温度: 25°C, 湿度: 45%)

测试管脚	接触放电	空气放电	单位
VBAT, GND	±10	±15	kV
天线接口	±10	±15	kV

5 物理尺寸

本章节描述了模块的机械尺寸。所有的尺寸单位为毫米; 所有未标注公差的尺寸, 公差为±0.05mm。

5.1 模块物理尺寸

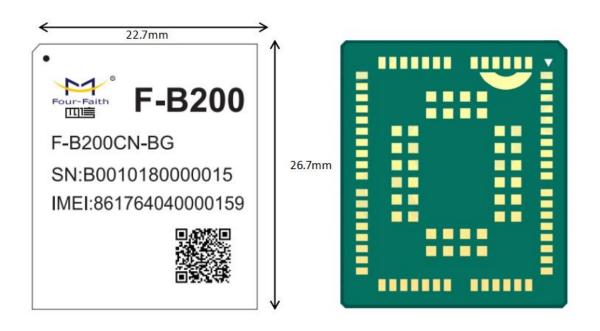


图 5-1 F-B200CN-BG 俯视及侧视图尺寸

5.2 推荐封装

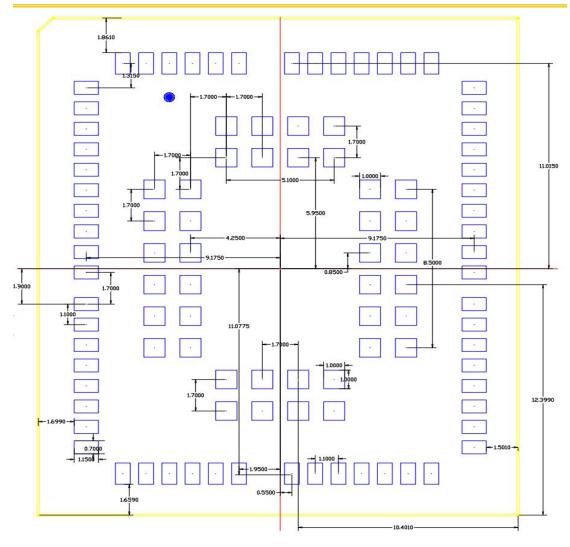


图 5-2 推荐封装 (俯视图)

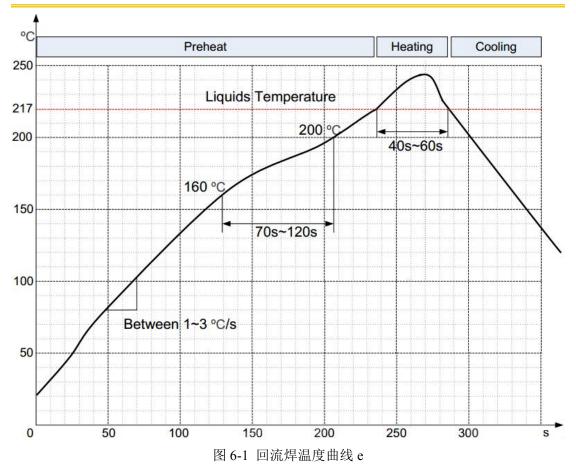
6 存储和生产

6.1 存储

F-B200CN-BG 以真空密封袋的形式包装,模块的存储需遵循如下条件:

- 1. 环境温度低于 40 摄氏度,空气湿度小于 90%情况下,模块可在真空密封袋中存放 12 个月。
 - 2. 当真空密封袋打开后,若满足以下条件,模块可直接进行回流焊或其它高温流程:
 - ●模块存储空气湿度小于 10%
 - ●模块环境温度低于 30 摄氏度,空气湿度小于 60%,工厂在 168 小时以内完成贴片。
 - 3. 若模块处于如下条件,需要在贴片前进行烘烤:
 - 当环境温度为 23 摄氏度(允许上下 5 摄氏度的波动)时,湿度指示卡显示湿度大于 10%。
 - 当真空密封袋打开后,模块环境温度低于 30 摄氏度,空气湿度小于 60%,但工厂未能在 168 小时以内完成贴片。
 - 当真空密封袋打开后,模块存储空气湿度大于10%。
 - 4. 如果模块需要烘烤,请在125摄氏度下(允许上下5摄氏度的波动)烘烤48小时。

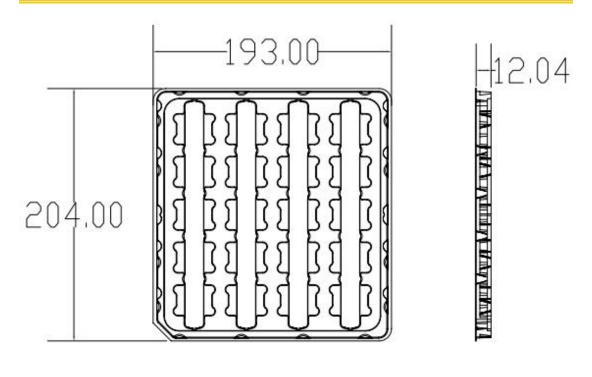
注意:


模块的包装无法承受高温烘烤。因此在模块烘烤之前,请移除模块包装。如果只需要短时间的烘烤,请参考 IPC/JEDECJ-STD-033 规范。

6.2 生产焊接

用印刷刮板在网板上印刷锡膏,使锡膏通过网板开口漏印到 PCB上,印刷刮板力度需调整合适,为保证模块印膏质量, F-B200CN-BG 模块焊盘部分对应的钢网厚度应为0.18mm。

推荐回流焊的温度为 235~245°C,不能超过 260°C。为避免模块反复受热损坏,建议客户 PCB 板第一面完成回流焊后再贴模块。推荐的炉温曲线图如下图所示:



6.3 包装

F-B200CN-BG 模块采用托盘包装,并用真空密封袋将其封装。建议在实际生产使用的时候再打开真空包装。每个托盘长 204 毫米,宽 194 毫米,包含 20 个 F-B200CN-BG 模块。托盘尺寸分别如下图所示。

12.04

图 6-2 载带尺寸