F2910 系列 NB-IoT 终	文档版本	密级
端使用说明书	V2. 1. 1	
	产品名称: F2910	共 30 页

F2910 系列 NB-IoT 终端使用说明书

此说明书适用于下列型号产品:

型号	产品类别
F2910-B5	B5 NB-IoT 终端
F2910-B8	B8 NB-IoT 终端
F2910-BL	B1/B2/B3/B4/B5/B8/B12/B13/B18/
	B19/B20/B26/B28 NB-IoT 终端
F2910-BLG	B1/B2/B3/B4/B5/B8/B12/B13/B18/
	B19/B20/B26/B28 和 GPS NB-IoT
	终端

客户热线: 400-8838 -199 电话: +86-592-6300320 传真: +86-592-5912735 网址: <u>www.four-faith.com</u> 地址: 厦门集美软件园三期 A06 栋 11 层

文档修订记录

日期	版本	说明	作者
2017-11-12	V1. 0. 0	初始版本	WSP/WYL
2018-07-02	V2. 0. 0	增加 F2910-BL 型号	YSL
2019-07-26	V2. 1. 0	增加 GPS 模块说明	Jason
2020-09-10	V2.1.1	I0 接口描述和频段描述和新增协议说明	YSL/HFQ

著作权声明

本文档所载的所有材料或内容受版权法的保护,所有版权由厦门四信通信科技有限公司 拥有,但注明引用其他方的内容除外。未经四信公司书面许可,任何人不得将本文档上的任 何内容以任何方式进行复制、经销、翻印、连接、传送等任何商业目的的使用,但对于非商 业目的的、个人使用的下载或打印(条件是不得修改,且须保留该材料中的版权说明或其他 所有权的说明)除外。

商标声明

Four-Faith、四信、^{Sour-Faith}、 cour-Faith **DD** [®]、 ⁹均系厦门四信通信科技有限公司 注册商标,未经事先书面许可,任何人不得以任何方式使用四信名称及四信的商标、标记。

注: 不同型号配件和接口可能存在差异,具体以实物为准。

第一章 产品简介	6
1.1 产品概述	6
1.2 产品特点	6
1.3 工作原理框图	7
1.4 产品规格	8
第二章 安装	.10
2.1 概述	.10
2.2 装箱清单	.10
2.3 安装与电缆连接	.10
2.4 电源说明	.13
2.5 指示灯说明	.13
第三章 参数配置	.14
3.1 配置连接	.14
3.2 参数配置方式介绍	.14
3.3 运行参数配置软件	.14
3.4 设备重新上电	.16
3.5 参数配置	.16
3.5.1 中心服务器参数	16
3.5.2 NB-IoT 终端工作参数	. 17
3.5.3 接口设置	.20
3.6 功能操作项	.22
3.7 GPS 参数设置	.23
第四章 数据传输试验环境测试	25
4.1 试验环境网络结构	.25
4.2 测试步骤	.25
附 录	.28

第一章 产品简介

1.1 产品概述

F2910 系列 NB-loT 终端是一种物联网无线数据终端,利用公用 NB-loT 网络为用户提供无线长距离数据传输功能。

该产品采用高性能的工业级 32 位通信处理器和工业级 NB-IoT 模块,以嵌入式实时操 作系统为软件支撑平台,同时提供 RS232 和 RS485 接口,可直接连接串口设备,实现数 据透明传输功能;低功耗设计;提供 3 路 I/O 和 2 路 ADC。

该产品已广泛应用于物联网产业链中的 M2M 行业,如无线抄表、智慧城市、智能电网、 智慧交通、消防、资产追踪、移动 POS 终端、物流、工业自动化、数字化医疗、军事、农 业、林业、水务、煤矿、石化等数据传输领域。NB-IoT 终端典型应用如下图所示:

1.2 产品特点

工业级应用设计

- ◆ 采用高性能工业级 NB-loT 模块
- ◆ 采用高性能工业级 32 位通信处理器
- ◆ 低功耗设计,支持多级休眠和唤醒模式,最大限度降低功耗
- ◆ 内置实时时钟(RTC)
- ◆ 采用金属外壳,保护等级 IP30。金属外壳和系统安全隔离,特别适合于工控现场的应用
- ◆ 宽电源输入(DC 5~36V)

稳定可靠

- ◆ WDT 看门狗设计,保证系统稳定
- ◆ 采用完备的防掉线机制,保证数据终端永远在线
- ◆ RS232/RS485 接口内置 15KV ESD 保护
- ◆ UIM 卡接口内置 15KV ESD 保护
- ◆ 电源接口内置反相保护和过压保护
- ◆ 天线接口防雷保护(可选)

标准易用

- ◆ 采用工业端子接口,特别适合于工业现场应用
- ◆ 提供标准 RS232 和 RS485 接口,可直接连接串口设备
- ◆ 可定制 TTL 电平串口、可定制 2 路 RS232 或者 2 路 RS485
- ◆ 智能型数据终端,上电即可进入数据传输状态
- ◆ 提供功能强大的中心管理软件,方便设备管理(可选)
- ◆ 使用方便,灵活,多种工作模式选择
- ◆ 方便的系统配置和维护接口
- ◆ 支持串口软件升级和远程维护

功能强大

- ◆ 提供3路 I/O和2路 ADC,定制可实现5路数字量输入输出、5路模拟量输入、定制5 路脉冲计数功能
- ◆ 支持根据域名和 IP 地址访问中心
- ◆ 内嵌标准的 TCP/UDP/COAP/MQTT 等协议栈,支持透明数据传输
- ◆ 支持双数据中心备份传输及5个数据中心同步传输
- ◆ 支持 GPS (可选)
- ◆ 支持 GPRS (可选)

1.3 工作原理框图

NB-IoT 终端原理框图如下:

7 / 30

1.4 产品规格

无线参数

项目	内容
F2910 NB-loT 终站	尚
	B5: 850MHz
	B8: 900MHz
長准五柄仍	BL: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B26/B28 MHz 等频段可
标准及则段	选
	BLG:B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B26/B28 MHz 等频段可
	选和 GPS 功能
理论带宽	100bps~100Kbps
发射功率	$23 \pm 1 \mathrm{dBm}$
接收灵敏度	<-129dBm

硬件系统

2411241026	
项目	内容
CPU	工业级 32 位通信处理器
FLASH	512KB
SRAM	256KB

接口类型

项目	内容
串口	1个 RS232 和 1个 RS485 接口, 内置 15KV ESD 保护, 串口参数如下:
	数据位: 5、6、7、8位
	停止位: 1、1.5、2位
	校验:无校验、偶校验、奇校验、SPACE及 MARK 校验
	串口速率: 110~230400bits/s
指示灯	具有电源、通信及在线指示灯
天线接口	标准 SMA 阴头天线接口,特性阻抗 50 欧
UIM 卡接口	标准的抽屉式用户卡接口,支持 3V UIM 卡,内置 15KV ESD 保护
电源接口	端子接口,内置电源反相保护和过压保护
	天线接口 テ线接口 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

注: 不同型号配件和接口可能存在差异,具体以实物为准。

供电

项目	内容
标准电源	DC 12V/0.5A
供电范围	DC 5~36V

功耗

工作状态	功 耗
深度休眠	35-40uA@12VDC
普通休眠	1-2mA@12VDC
待机	5-7mA@12VDC
通信	15-20mA@12VDC

物理特性

项目	内容
外壳	金属外壳,保护等级 IP30
外形尺寸	91x58.5x22 mm (不包括天线和安装件)
重量	210g

其它参数

项目	内容
工作温度	$-35 \sim +75^{\circ} C (-31 \sim +167^{\circ} F)$
储存温度	$-40 \sim +85^{\circ} C (-40 \sim +185^{\circ} F)$
相对湿度	95% (无凝结)

第二章 安装

2.1 概述

NB-loT 终端必须正确安装方可达到设计的功能,通常设备的安装必须在本公司认可合格的工程师指导下进行。

▶ 注意事项: 请不要带电安装 NB-IoT 终端。

2.2 装箱清单

当您开箱时请保管好包装材料,以便日后需要转运时使用。清单如下:

- ◆ NB-IoT 终端 1 个(根据用户订货情况包装)
- ◆ 使用说明书光盘 1 张
- ◆ 车载天线(SMA 阳头) 1 根
- ◆ 配套电源 1 个
- ◆ RS232 交叉线 1 条 (或 RS485 线 1 条, 可选)
- ◆ 产品合格证
- ◆ 产品保修卡

2.3 安装与电缆连接

外形尺寸:

NB-loT 终端封装在金属机壳内,可独立使用,两侧有固定的孔位,方便用户安装,具体的尺寸参见下图。(单位:mm)

安装指示图

天线及 SIM 卡安装:

NB-loT 终端天线接口为 SMA 阴头插座。将配套天线的 SMA 阳头旋到天线接口上,并确保旋紧,以免影响信号质量。

安装或取出 SIM 卡时,先用尖状物插入 SIM 卡座右侧小黄点,SIM 卡套即可弹出。安装 SIM 卡时,先将 SIM 卡放入卡套,并确保 SIM 卡的金属接触面朝外,再将 SIM 卡套插入抽屉中,并确保插到位。

接口编号	接口名称	默认功能	扩展功能
1	PWR	电源输入正极	无
2	GND	系统地	无
3	GND	系统地	无
4	RX	RS232 数据接收	预留兼容 TTL RX
5	TX	RS232 数据发送	预留兼容 TTL TX
6	А	RS485 通讯接口 A	预留兼容 TTL RX
7	В	RS485 通讯接口 B	预留兼容 TTL TX
8	IO1	GPIO, 可检测干节点信号和 3.3V 开	定制脉冲输出、脉冲计数
		关量信号。可输出 3.3V 开关量信号	和模拟量输入功能。
9	IO2	GPIO, 可检测干节点信号和 3.3V 开	定制脉冲输出、脉冲计数
		关量信号。可输出 3.3V 开关量信号	和模拟量输入功能。
10	IO3	GPIO, 可检测干节点信号和 3.3V 开	可定制脉冲输出、脉冲计
		关量信号。可输出 3.3V 开关量信号	数和模拟量输入功能。

接口信号定义说明:

11 / 30

11	IO4	模拟量输入(4~20mA 电流采集)	可定制脉冲输出、脉冲计
			数和模拟量输入功能。
12	IO5	模拟量输入(4~20mA 电流采集)	可定制脉冲输出、脉冲计
			数和模拟量输入功能。

安装电缆:

F2910 采用工业级端子接口,建议使用的电源线材和数据线材为 28-16AWG。标配电源 和数据线说明如下:

电源(输出 12V DC/0.5A):

线材颜色	电源极性
黑白相间	正极
黑色	负极

RS232 线 (一端为 DB9 母头):

线材颜色	对应 DB9 母头管脚
棕色	2
蓝色	3
黑色	5
DC105 供 (可选)	

RS485 线(可选):

线材颜色	信号定义
红色	RS485 正极(A)
黑色	RS485 负极(B)

电源和数据接口线缆连接示意图:

2.4 电源说明

NB-IoT 终端通常应用于复杂的外部环境。为了适应复杂的应用环境,提高系统的工作 稳定性,NB-IoT 终端采用了先进的电源技术。用户可采用标准配置的 12V DC/500mA 电源 适配器给 NB-IoT 终端供电,也可以直接用直流 5~36V 电源给 NB-IoT 终端供电。当用户采 用外加电源给 NB-IoT 终端供电时,必须保证电源的稳定性(纹波小于 300mV,并确保瞬间 电压不超过 36V),并保证电源功率大于 4W 以上。

推荐使用标配的 12V DC/500mA 电源。

2.5 指示灯说明

NB-IoT 终端提供三个指示灯: "Power", "ACT", "Online"。指示状态如下:

指示灯	状态	说明
Power	灭	设备未上电
	亮	设备电源正常
ACT	灭	没有数据通信
	闪烁	正在数据通信
Online	灭	NB-IoT 终端不在线
	亮	NB-IoT 终端在线

第三章 参数配置

3.1 配置连接

在对 NB-IoT 终端进行配置前,需要通过出厂配置的 RS232 串口线或 RS232-485 转换线 把 NB-IoT 终端和用于配置的 PC 连接起来,如下图:

3.2 参数配置方式介绍

NB-IoT 终端的参数配置方式有两种:

- ◆ 通过专门的配置软件:所有的配置都通过软件界面的相应条目进行配置, 这种配置方式适合于用户方便用 PC 机进行配置的情况。
- ◆ 通过扩展 AT 命令(以下简称 AT 命令)的方式进行配置:在这种配置方式下, 用户只需要有串口通信的程序就可以配置 IP

MODEM 的所有的参数,比如 WINDOWS 下的超级终端,LINUX 下的 minicom, putty 等,或者直接由用户的单片机系统对设备进行配置。在运用扩展 AT 命令对 NB-IoT 终端进行配置前需要让 NB-IoT 终端进入配置状态,其步骤请参考附录。

下面以配置软件的方式为主详细介绍 NB-IoT 终端的各配置项,同时也给出应用扩展 AT 命令配置方式的具体配置 AT 命令。

3.3 运行参数配置软件

NB-IoT 终端 F2910_V1.0.0.exe

F2910系列 NB-IoT 终端使用说明书

N.4 170010		
₩ 1-2910町五工具 41.0.0		7002
串口		11.五齐周
串口号: COM3 🔹	波特率: 115200 💌	工作模式 串口 Lora参数 Zigbee参数 GPS参数 操作 ← →
校验: 8N1 ▼	打开	连接协议设置 工作协议: TRNS ▼
其他		调试信息
语言: 中文 🔻	清屏	调试等级: 等级2 ▼ 信息輸出接口: 串口1 ▼
日志信息		
		登柱配法 退出登柱 下发配置 读取配置 导入配置 配置备份
		状态:已进入配置 厦门四信通信科技有限公司 2017年05月25日 V1.0.0

在串口参数设置栏内显示当前打开串口的串口参数,默认情况下是 COM1,115200,并 且串口已经打开,如果您连接 NB-IoT 终端的实际串口参数不相符,请在此项配置中选择正 确的值,同时打开串口。串口参数设置栏内的右边按钮若显示为"关闭串口",表明串口已 经打开,否则请打开串口。串口打开时,在输出信息栏内会给出提示信息:串口(COM)已打 开,请重新上电设备,正在等待设备上电后进入配置状态...

3.4 设备重新上电

AL AL		
□号: 0008 ● 波特率: 115200 脸: 001 ● 次前 ● ●		配置界面
A: NI	▼ 波特率: 115200 ▼	F模式 中心服务 串口 I/O应用 无线拨号 全局参数 Lora参数 Zigbee参 ← →
他 意: 中文	· 关闭	主接协议设置 工作协议:
a: 中文	ž	数活设置 数活方式: ▼
<pre>cttquit</pre>	THAT I	期试信息 调试等级:
K 2017-11-10 10:40:42] setting proc 1600	10:40:40] uart 0 int 20 10:40:40] uart 2 int 20 10:40:41] FF_ReadIngDatByAtCmd:rsp 0, count 10:40:41] and 10c size 255 10:40:41] and 10c size 255 10:40:41] alloc ram at 0x2000cc98, size:272 10:40:42] FF_ReadIngDatByAtCmd:rsp 0, count 10:40:42] FF_REAdING 10:40:40:40:40:40:40:40:40:40:40:40:40:40	

重新上电后配置工具会使 NB-IoT 终端进入登入配置状态,点击"读取配置"载入设备中的当前配置参数,并显示在右边的 "配置界面" 中,至此可以开始配置 NB-IoT 终端中所有配置参数。

3.5 参数配置

3.5.1 中心服务器参数

在"中心服务器参数"页面中是关于数据服务中心的配置

◆中心服务器数目

NB-IoT 终端 支持两种数据服务中心接收数据的方式:

一种是主副中心备份的方式,当 NB-IoT 终端上线以后,它首先去连接主中心,如果连接成功 NB-IoT 终端将和主中心进行数据通信,否则 NB-IoT 终端会尝试连接副中心进行数据通信。

注:如果没有副中心的话,请把副中心和主中心配置成相同的值。

另一种是多中心的方式,NB-IoT终端最多可以支持到同时和5个中心进行数据通信,在这种模式下,NB-IoT终端上线后会尝试和配置的多个数据中心建立连接,并进行数据通信。

中心服务器

服务器数量: 1 -

中心服务器数目为1时 NB-IoT 终端将工作于主副中心备份的方式,此时主中心和备份中 心配置生效。

中心数目大于1时NB-IoT终端将工作于多中心的方式,此时备份中心无效,主中心和中心1~4有效。

◆主中心地址,端口

主中心服务器的 IP 地址或者域名,端口建议设置在 1024 以上。

◆多中心服务器配置

中心服务器			
服务器数里:	5		
服务器1:	166. 111. 8. 238	端口:	23
服务器2:	166. 111. 8. 238	端口:	23
服务器3 :	166. 111. 8. 238	端口:	23
服务器4:	166.111.8.238	端口:	23
服务器5:	166. 111. 8. 238	端口:	23

当服务器数目大于1时多中心配置有效。比如,设置服务器数目为5,此时主中心为中心 1,中心5对应于5个用于通信的数据服务中心。

3.5.2 NB-IoT 终端工作参数

◆ NB-IoT 终端工作	乍模式	
连接协议设置		
工作协议:	TRNS	•

透传模式: 心跳包采用 UDP 协议,数据通信采用 UDP 协议,心跳包和数据通信采用同一个 UDP 连接。

◆ 传输协议

UDP 和 TCP: 该模块可以配置自定义心跳、心跳应答、注册包和注册应答包,包的格式可以 支持配置 text 或者 hex

MQTT: 该模式需要配置如下参数:

MQTT用户名:		MQTT密码:]
SUB主题:	topic_sub	PUB主题:	topic_pub]

- 用户名和密码为对应 mqtt 登录的时候使用的参数,SUB 主题为订阅的主题,收到该主题下 发数据时会透传到设备串口,PUB 主题为推送的主题,串口透传的数据会包含该主 题上送到服务器
- ◆ 激活方式

激活设置		
激活方式:	自动	-

通常情况下 NB-IoT 终端工作在永远在线的状态,随时保持数据传输通道的畅通,及时传输应用数据。但在一些对无线通信数据流量特别敏感的场合,为了节省流量,平时可以让 NB-IoT 终端处于待机状态,一旦有应用数据需要传输的时候,通过 NB-IoT 终端的内部的激活方式,使 NB-IoT 终端上线,建立数据传输通道,传输完成后挂断连接使其重新回到待机状态,NB-IoT 终端支持如下几种激活方式。

自动:这种方式使 NB-IoT 终端永远在线。

- 串口:串口激活的方式,通过向 NB-IoT 终端串口发送特定的数据,使 NB-IoT 终端建立或者 拆除数据通信链路。
- 10: 10 激活的方式,通过向 NB-IoT 终端制定 10 设置高电平,使 NB-IoT 终端激活并建立连接,通过向 NB-IoT 终端制定 10 设置低电平使 NB-IoT 终端进入休眠模式。
- 定时:定时激活的方式,通过设定特定的时间,使 NB-IoT 终端自动休眠和唤醒。
- ◆ 调试信息等级

调试信息等级用于设备的软件调试或者简单的信息提示。

- 0 --- 没有任何调试信息输出
- 1 --- 输出简单的提示信息
- 2 --- 输出详细的调试信息

注:只有在设备不能正常工作,需要调试软件的时候才需要把调试等级设置为2,正常情况下设置为2会影响正常的数据通信。

◆ 数据,校验及停止位

数据、校验及停止位: 301 ▼

8N1 --- 8 位数据位,无校验,一位停止位
8E1 --- 8 位数据位,偶校验,一位停止位
801 --- 8 位数据位,奇校验,一位停止位

◆ 设备工作波特率

110	110 bps
300	300 bps
600	600 bps
1200	1200 bps
2400	2400 bps
4800	4800 bps
9600	9600 bps
14400	14400 bps
19200	19200 bps
38400	38400 bps
56000	56000 bps
57600	57600 bps
115200	115200 bps

◆ 是否自动返回主中心

	and a second sec	
返回主中心:	是	-

否 --- 不自动返回主中心

是 ----自动返回主中心

此项只在 NB-IoT 终端工作在主副中心备份方式下有效。在主副中心备份工作方式下,如 果主中心异常,NB-IoT 终端会自动连接到备份中心,如果设置此项为 1,NB-IoT 终端会定期 检测主中心是否工作正常,如果正常它会自动切换回主中心,并断开与备份中心的连接,如 果此项设置为 0,NB-IoT 终端不会检测主中心是否恢复正常工作。

•	数据帧间隔时间
---	---------

|--|

数据帧间隔(MS): 20

用于判断串口数据帧是否接收完成,如果两字节间的时间间隔大于设定的值,NB-IoT终端立即将当前接收到的数据发送到数据中心。

◆ 十六进制心跳包注册包

包格式:	Text 🗾 🔻			
	Text			
	Hex			

此配置项只有在 NB-IoT 终端工作在 TCST 协议模式下才生效,用于配置自定义的心跳包与自定义注册包的内容,具体如下:

 TEXT:
 即字符串形式,输入的内容与上传到中心的内容一样。

 HEX:
 16 进制字符串。例如输入:313233,上报值为:123

注: 1. 16 进制时输入的字符必须为偶数,并在 0-9 或 a-f 或 A-F 这三组范围内。 2. 当修改完此项参数时自定义心跳包与自定义注册包要重新设置一次。

◆ 自定义注册包

注册包:

此配置项只有在 NB-IoT 终端工作在 TCST 协议模式下才生效,用于配置自定义的注册包, 也可以为空(表示不发送注册包)。注册包的最大长度为 70 字节。

此配置项只有在 NB-IoT 终端工作在 TCST 协议模式下才生效,用于配置自定义的心跳包, 也可以为空(表示不发送心跳包)。最大长度为 70 字节。

◆ 重联设置	
重连间隔(秒):	l
重连次数:	

在实际应用中,如果由于中心服务器异常或者关闭服务器,导致 NB-IoT 终端始终无法建 立连接,NB-IoT 终端为了确保永远在线而不断地尝试建立连接,这样就产生不必要的流量, 通过设置这两项可以防止不必要的流量浪费,在 NB-IoT 终端连接设定的尝试次数后,如果仍 旧不能成功建立连接,NB-IoT 终端将进入休眠状态,休眠时间为设定的"重连任务之间的 间隔"。在休眠时间到了以后,NB-IoT 终端将再次尝试建立连接。

3.5.3 接口设置

- ◆ 输入采集: I0 工作在输入模式, 默认支持 I01-I03; 自定义协议:
 - i、查询方式:串口输入"查询指令"设置的字符串时; IO为高电平时,串口输出"高电平"设置的字符串;
 - IO 为低电平时,串口输出"低电平"设置的字符串;

	F2910 系列 NB-IoT 终端使用说明书
I01 I/01: 輸入采集 ▼ 协议 接口: ALL ▼	: 自定义 •
工报力式: 直询 ▼ 直询指令 数据格式: Text ▼ 高电平: IO1_HIGHT 低电平	: IO1_LOW
 ii、定时上报:在设置的上报间隔时间,串口输 I01 I/01: 输入采集 ▼ 协议: 接口: ALL ▼ 	出当前 IO 状态指示; 自定义
上报方式: 定时	: 5
数据格式: Text ▼ 高电平: IO1_HIGHT 低电平:	I01_LOW
 iii、电平变化:当 IO 电平有变化时,串口输出 I01 I/01:輸入采集 ▼ 协议: 接口:ALL ▼ 上报方式:电平变化 ▼ 数据格式: Text 高电平: IO1_HIGHT 低电平: 	当前 IO 状态指示; 自定义
AT 命令: 设置 IO 模式 AT+DIOWORKMODEx=1 (x 读取 IO 状态 AT+DIOVALx? 返回 +DIOVALx: 0/1	为对应 IO 口值: 1-5)
 ◆ 输出控制: I0 工作在输出模式, 默认支持 I01- I02 I/02: 輸出控制 ▼ 协议: 自接口: COM1 ▼ 	-I03; I定义
 数据格式: Text ▼ 控制响应: ○ 高电平: I02_HIGHT 低电平: I 自定义协议: i、串口输入"高电平"设置的字符串时, IO 報 串口发回"控制响应"设置的字符串, IO 報 串口发回"控制响应"设置的字符串, IO 報 	k 02_LOW 俞出高电平, 渝出低电平,

AT 命令: 设置 IO 模式 AT+DIOWORKMODEx=2 高电平输出 AT+DIOSETx 低电平输出 AT+DIOCLRx

◆ 设备状态指示: I0 用于指示设备状态, 默认支持 I01-I03;

```
I/03: 设备状态指示 ▼
对应中心: 服务器1 ▼
AT 命令:
设置 IO 模式 AT+DIOWORKMODEx=3
设置对应中心 AT+DIOMAPCx=n (n为对应数据中心: 1-5)
高电平: 上线
低电平: 下线
```

◆ 休眠唤醒激活: I0 用于休眠唤醒激活控制, 默认支持 I01-I03;

```
104 I/04: 休眠/唤醒激活 -
```

AT 命令: 设置 IO 模式 AT+DIOWORKMODEx=4

当激活方式设置为 IO 激活时, 高电平:激活 低电平:休眠

◆ ADC 采集: I0 工作在模拟量采集模式, 默认支持 I04-I05;

105 I/05: ADC采集 🔻

AT 命令: 设置 ADC 模式 AT+DIOWORKMODEx=6 读取 ADC 值 AT+DIOVALx? 返回 +DIOVALx: ADC_VAL

电流采集换算公式: I = (ADC_VAL*3.3) / (4095*150); //(单位 A) 电压采集换算公式: V = (ADC_VAL*3.3) / (4095*0.6); //(单位 V)

3.6 功能操作项

◆ 语言设置

语言:	中文	
口土住	English	
口志信。	中文	

F2910系列 NB-IoT 终端使用说明书

用于设置使用语言。

◆ 清除窗口

清屏

用于清除输出窗口的信息。

◆ 检测版本

检测版本

用于检测 NB-IoT 终端的软件和硬件版本号。

◆ 信号强度

检测信号

用于检测当前网络的信号强度。

◆ 出厂配置

恢复出厂

用于恢复到 NB-IoT 终端的出厂配置。

◆ RTC 时间设置

时间设置

设置设备的 RTC 时钟。点击'时间设置'后设置 PC 机当前的时间;

3.7 GPS 参数设置

注: 仅 F2910-BLG 设备支持 GPS 功能

◆ 开启定时采集 GPS 数据帧(单位: s)

				配置界面	۵.				
工作模式	中心服务	串口	I/0 <u>应</u> 用	无线拨号	全局参数	GPS参数	操作	←	÷
GPS参	数								
	GPS ID:	ID1234	456ABC	是否報	俞出GPGNS:	輸出	-		
GPS	数据帧间隔:	0		是否辅	俞出GPGSV:	輸出	-		
G	PS中心地址:	120.4	2.46.98	是否输	俞出GPGSA:	輸出	-		
	GPS號口:	2021		是否報	俞出GPGGA:	輸出	-		
网络	路传输协议:	VDP		- 是否報	俞出GPRMC:	輸出	-		
GPS数据	諸传输方向:	网络+8	即,	- 是否報	俞出GPVTG:	輸出	-		

◆ 设置 GPS 数据发送到的网络的传输协议、地址、端口

Faith		0				F29	10 系	列 NE	3-Io'	[终端使	用说
工作模式	中心服务	串口 I/	0应用	无线拨号	全局参数	GPS参数	操作	←	÷		
GPS参加	数										
	GPS ID:	ID123456	JBC	是否输	前出GPGNS:	輸出					
GPS ş	数据帧间隔:	0		是否输	淌出GPGSV:	输出	-				
GI	?S中心地址:	120. 42. 46	5. 98	是否输	前出GPGSA:	輸出	-				
	GPS號口:	2021		是否输	前出GPGGA:	输出	-				
网络	A 传输协议:	VDP	-	是否输	〕出GPRMC:	输出	-				
GPS数据	66输方向:	网络+串口	-		前出GPVTG:	輸出	•				

◆ 设置 GPS 数据发送到的网络、串口

网络+串口	
无	
网络	
串口	
网络+串口	
	 网络+串口 无 网络 串口 网络+串口

◆ 设置要输出的 GPS 数据

工作模式	中心服务	串口	I/0应用	无线拨号	全局参数	GPS参数	操作	←	÷
GPS参	数			_					
	GPS ID:	ID123	456ABC	是否報	俞出GPGNS:	輸出	-		
GPS §	数据帧间隔:	0		是否報	俞出GPGSV:	輸出	-		
GI	PS中心地址:	120.4	2.46.98	是否有	俞出GPGSA:	输出	-		
	GPS端口:	2021		是否有	俞出GPGGA:	輸出			
网络	路输协议:	VDP	-	是否有	俞出GPRMC:	輸出	•		
GPS数据	諸传输方向 :	网络+	事口 🔽	是否输	俞出GPVTG:	輸出	•		

◆ GPS 正确数据格式

\$GPGGA,024801.00,2436.616696,N,11802.851713,E,1,08,0.8,76.2,M,8.0,M,,*60 \$GPGSA,A,2,01,03,07,08,17,19,22,30,,,,,1.2,0.8,0.9*31 \$GPGSV,4,1,14,01,41,030,30,03,45,108,33,07,21,188,50,08,11,075,28*76 \$GPRMC,024801.00,A,2436.616696,N,11802.851713,E,0.0,0.0,260719,3.0,W,A*28 \$GPVTG,0.0,T,3.0,M,0.0,N,0.0,K,A*20

◆ GPS 无效数据(请检查 GPS 天线)

\$GPGGA,,,,,0,,,,,,*66 \$GPGSA,A,1,,,,,*1E \$GPGSV,1,1,04,07,,,49,08,,,32,22,,,35,50,,,38*76 \$GPRMC,,V,,,,,N*53 \$GPVTG,,T,,M,,N,K,N*2C W

第四章 数据传输试验环境测试

4.1 试验环境网络结构

- Server: 模拟实际应用中的数据中心,在 Server 上运行网络调试助手软件,假设 Server 的 IP 地址为 222.76.128.204,监听端口为: 5001。
- PC : 模拟用于数据采集的串口设备,运行串口调试工具。

由数据采集 PC 发送数据给 Server 的数据流程为:

PC串口数据 → NB-IoT终端串口 → NB-IoT终端 UDP 协议栈对数据进行 UDP 封装 → 发送到无线网络 →无线网络转发到 INTERNET →INTERNET 转发数据到 Server 。 Server 发送数据到 PC 的流程是上面过程的逆向传输。

4.2 测试步骤

1. 在 Server 上运行网络调试助手软件,协议类型选择: UDP,填写相应的本地 IP 地址和本 地端口号。

	网络调试助手	(C∎精装版	V3. 8. 2)		<u> </u>
网络设置 (1)协议类型 UDP ▼ (2)本地IP地址 222.76.128.204 (3)本地端口号 5001 ● 连接	─────────────────────────────────────				
接收区设置 接收转向文件 显示接收时间 十六进制显示 管 接收显示 保存数据 清除显示					
发送区设置 「 启用文件数据源 「 自动发送附加位 「 发送完自动清空 「 按十六进制发送 「 数据流循环发送					
发送间隔 1000 毫秒 文 <u>件载入</u> 清除输入					发送
☞ 就绪!		发送	€:0	接收:0	复位计数

- 2. 配置 NB-IoT 终端参数 数据服务中心的 IP 地址为 222.76.128.204,端口为 5001。
- 3. 关闭 NB-IoT 终端配置工具,运行串口测试程序。

		Ă
		▼ HEX显示
波特率 115200 ▼ □	★DX516F仿真器热销中! 使用V8.4内核♥可仿真全部资源、飞速. 点这里进入查看>>> ★点击此处进入"单片机大虾论坛"	<u>少</u> 祝] 单步 !

4. 确认 NB-IoT 终端中已经插入可用于数据通信的 SIM 卡,并重新上电 NB-IoT 终端使其正常工作。

5. 串口工具提示的信息表明 NB-IoT 终端与数据中心成功建立连接。

6. 通过串口工具给 Server 发送数据,网络调试助手软件上显示接收到的数据,说明串口工 具能够正确发送数据给数据中心。

7. 数据中心发送数据给串口工具。

以上测试表明,网络调试助手和串口工具能够双向进行数据通信。

附 录

下面以 WINDOWS 的超级终端为例,说明使 NB-IoT 终端进入配置状态的步骤。

1. 点击 "开始"→"程序"→"附件"→"通讯"→"超级终端"

连接描述	<u>? ×</u>
新建连接	
输入名称并为该连接选择图标:	
名称(0):	
四标(I):	
	-
	以消

- 2. 输入连接名,选择"确定"。
- 3. 选择连接到 NB-IoT 终端所采用的实际物理串口,选择"确定"。

连接到	<u>? ×</u>
🧞 ff	
输入待拨电话的详	细信息:
国家(地区)(C):	中华人民共和国 (86) 🗾
区号(图):	888
电话号码(图):	
连接时使用(图):	COM1
X	确定取消

4. 如下图配置超级终端,并选择"确定"。

通信速率:	115200
数据位: 8	
奇偶校验:	无
停止位:1	
数据流控:	无

毎秒位数(B): 115200	
数据位(D): 8	<u> </u>
奇偶校验(2): [无	
停止位(S): 1	
数据流控制	E): 第	

5. 此时超级终端正常运行起来了。

<mark>そ26 - 超级终端</mark> 文件 12 編辑 12 直看 12 吁叫 12 传送 12 帮助 13	<u>-0×</u>
[二注版 U:UU:4: 日初/短期 日初/短期 3に応じた 0.45.5 1/08 3第 31.52	11.

6. 重新给 NB-IoT 终端上电,并一直按住键盘的 's'键,直到设备进入配置状态。

7. 至此,NB-IoT终端已经成功进入配置状态。